Contrasted effects of inhibitors of cytochrome b6f complex on state transitions in Chlamydomonas reinhardtii: the role of Qo site occupancy in LHCII kinase activation.

نویسندگان

  • G Finazzi
  • F Zito
  • R P Barbagallo
  • F A Wollman
چکیده

We have investigated the relationship between the occupancy of the Q(o) site in the cytochrome b(6)f complex and the activation of the LHCII protein kinase that controls state transitions. To this aim, fluorescence emission and LHCII phosphorylation patterns were studied in whole cells of Chlamydomonas reinhardtii treated with different plastoquinone analogues. The analysis of fluorescence induction at room temperature indicates that stigmatellin consistently prevented transition to State 2, whereas 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone behaved as an inhibitor of state transitions only after the cells were preilluminated. The same effects were observed on the phosphorylation patterns of the LHCII proteins, while subunit V of the cytochrome b(6)f complex showed a different behavior. These findings are discussed on the basis of a dynamic structural model of cytochrome b(6)f that relates the activation of the LHCII kinase to the occupancy of the Q(o) site and the movement of the Rieske protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase.

We created a Qo pocket mutant by site-directed mutagenesis of the chloroplast petD gene in Chlamydomonas reinhardtii. We mutated the conserved PEWY sequence in the EF loop of subunit IV into PWYE. The pwye mutant did not grow in phototrophic conditions although it assembled wild-type levels of cytochrome b6f complexes. We demonstrated a complete block in electron transfer through the cytochrome...

متن کامل

Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii.

The energetic metabolism of photosynthetic organisms is profoundly influenced by state transitions and cyclic electron flow around photosystem I. The former involve a reversible redistribution of the light-harvesting antenna between photosystem I and photosystem II and optimize light energy utilization in photosynthesis whereas the latter process modulates the photosynthetic yield. We have used...

متن کامل

The central role of the green alga Chlamydomonas reinhardtii in revealing the mechanism of state transitions.

This review focuses on the essential role played by the green alga Chlamydomonas reinhardtii in revealing both the mechanism and the physiological consequences of state transitions. Two aspects are considered. The first is the role of the cytochrome b6f complex in regulating state transitions, in light of the recently obtained 3D structure. The second is the switch between linear and cyclic ele...

متن کامل

Analysis of the Chloroplast Protein Kinase Stt7 during State Transitions

State transitions allow for the balancing of the light excitation energy between photosystem I and photosystem II and for optimal photosynthetic activity when photosynthetic organisms are subjected to changing light conditions. This process is regulated by the redox state of the plastoquinone pool through the Stt7/STN7 protein kinase required for phosphorylation of the light-harvesting complex ...

متن کامل

Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii.

Starving microalgae for nitrogen sources is commonly used as a biotechnological tool to boost storage of reduced carbon into starch granules or lipid droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report that the selective depletion of Rubisco and cytochrome b6f complex that occurs when Chlamydomonas reinhardtii is starved for nitrogen in the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 13  شماره 

صفحات  -

تاریخ انتشار 2001